
1 23

Journal of Computer Virology and
Hacking Techniques

ISSN 2274-2042

J Comput Virol Hack Tech
DOI 10.1007/s11416-015-0237-z

U-HIPE: hypervisor-based protection of
user-mode processes in Windows

Andrei Luțaș, Adrian Coleșa, Sándor
Lukács & Dan Luțaș

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag France. This e-offprint is for personal

use only and shall not be self-archived

in electronic repositories. If you wish to

self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

J Comput Virol Hack Tech
DOI 10.1007/s11416-015-0237-z

ORIGINAL PAPER

U-HIPE: hypervisor-based protection of user-mode processes
in Windows

Andrei Lut,as, · Adrian Coles, a · Sándor Lukács ·
Dan Lut,as,

Received: 11 September 2014 / Accepted: 16 January 2015
© Springer-Verlag France 2015

Abstract We propose a method to protect user-processes
against malicious software attacks running an introspection
and protection tool (U-HIPE) inside a hypervisor. Our solu-
tion is based on hardware virtualization support, imposing
“no-write” and/or “no-execution” restrictions on different
guest virtual machine’s (VM) memory pages. Protected com-
ponents include process’ thread stacks, heaps and loadable
modules. This way most attempts to execute malicious code
in a process are detected and blocked. We propose a method
to deal with swappable pages. We inject page-fault excep-
tions in the guest VM when trying to read swapped-out
pages for introspection. We also intercept all swap-in and
swap-out events to correctly maintain protection on needed
memory pages. We implemented a testing prototype for pro-
tecting user-processes in several Microsoft Windows operat-
ing systems. Tests we performed proved the effectiveness of
our solution against attacks like polymorphic/packed viruses,
hook injection and injected code execution. The introduced
overhead is acceptable for most applications.

A. Lut,as, · S. Lukács · D. Lut,as,
Bitdefender, Cuza Voda str., no. 1, 400107 Cluj-Napoca, Romania
e-mail: vlutas@bitdefender.com

S. Lukács
e-mail: slukacs@bitdefender.com

D. Lut,as,
e-mail: dlutas@bitdefender.com

A. Coles, a (B)
Technical University of Cluj-Napoca, Baritiu str., no. 26–28,
400027 Cluj-Napoca, Romania
e-mail: adrian.colesa@cs.utcluj.ro

1 Introduction

The below-OS implementation [5,9,17,38] of security solu-
tions was a logical consequence of the large-scale adoption
of virtualization used to run more virtual machines (VM) on
the same physical system. The security tools in such cases
are based on the control capabilities of the virtualization sys-
tem, usually called hypervisor or VM monitor (VMM). The
main advantages of the below-OS strategy over the inside-
OS alternative are: (1) increased security, resulted from the
isolation of the security tool from the possible malware in
the VM, and (2) simpler and more efficient deployability for
a large number of VMs.

On the other hand, because the below-OS security tools
use introspection [12,21,23] of the monitored VM’s mem-
ory, they face some challenges, among which possible per-
formance penalties and the semantic gap [5,8].

The performance was greatly improved due to the lat-
est advancement in the hardware virtualization support [16].
There were also proposed numerous solutions to reduce the
semantic gap. The overall purpose was to do it having no
knowledge about the guest OS. Still, the resulting solu-
tions could be divided in two classes: (1) (more or less)
guest OS-dependent [8,11,13,22,24], and (2) totally guest
OS-independent [18–20,34]. The OS-dependent solutions
require knowledge about the internal data structures of the
guest OS, which are generally obtained through reverse engi-
neering techniques. So, for the sake of generality an OS-
independent solution is desired. Unfortunately, the meaning
of the VM contents based only on the virtual hardware infor-
mation is very limited and also lacks precision. This is why
on production systems a pure OS-independent approach is
not realistic, if applicable at all.

Therefore, we adopted a combined strategy: OS-depend-
ent method when precision and performance are required,

123

Author's personal copy

A. Luţaş et al.

and OS-independent one, otherwise. Even so, our OS-
dependent method is generic enough, as it uses basic data
structures existent in some particular form in most OSes (e.g.
Windows, Linux), like the list of processes/threads, allocated
heaps, loaded modules etc.

The main contributions of our paper are:

1. Protection against intrusion attacks on user-mode pro-
cesses. Many existent hypervisor-conducted security
solutions introspect certain guest OS data structures
to either protect them against kernel rootkit attacks or
detect already injected malicious code inside the ker-
nel [28,31]. Just few of them [15,20,24,34] focus also
on user-mode process protection. Notwithstanding, there
are attacks that target only user processes, which can-
not be detected by only protecting the OS kernel. For
instance, attacks using application exploits to gain access
on user processes that manipulate important user data
(e.g. the mail client, the Internet browser) do not need
at all controlling the OS kernel to be able to steal and
manipulate user secret data, like passwords, personally
identifiable information (PII), emails, contacts etc. Our
proposed solution aims protection against such types of
attacks, applying introspection and protection on both the
kernel and user memory spaces.

2. Protection against an extended range of attacks on user-
mode processes. The existent user-mode process security
solutions are limited regarding the attack types they could
fight against. For instance, [34] only protects against
stack smashing attacks, [20] reports the existence of
running malicious processes or user-process code, but
cannot block the corresponding attacks when they start,
and [24] blocks any malicious execution, but requires
the user to specify and maintain a database with autho-
rized code. We propose a solution that protects user-mode
processes against an extended range of attacks, like poly-
morphic/packed viruses, hook injection and injected code
execution. The protected user-process components are
the thread stacks, heaps and the loadable modules.

3. A generic hardware-based user-mode attack prevention
method. Our security tool (U-HIPE) actively monitors
user-processes, preventing the attack occurrences. It is
based on hardware virtualization support commonly pro-
vided by a large range of modern processors, like Intel,
AMD, ARM Cortex-A15.

4. An OS-independent method to deal with swapped-out
pages. Our security tool transparently manage swappable
pages for purposes of introspection and protection main-
tenance, independent of the fact that they are in memory
or swapped out.

5. Detailed description of an implementation of a testing
prototype of U-HIPE in several Microsoft Windows oper-
ating systems. Real-life tests we performed proved the

effectiveness of our solution against attacks like poly-
morphic/packed viruses, hook injection and injected code
execution.

Section 2 compares U-HIPE with other solutions. Sec-
tion 3 describes the environment assumptions we make
and the threats our solution could face successfully. Sec-
tion 4 presents the Intel virtualization support we use. Sec-
tion 5 presents the user-process protection strategy. Section 6
describes the page-fault injection mechanism used to access
swapped-out memory pages. Section 7 details the implemen-
tation of U-HIPE on a Windows OS. Section 8 analyzes the
security capabilities of U-HIPE. Section 9 illustrates the eval-
uation results, and Sect. 10 concludes the paper.

2 Related work

Some below-OS security solutions require either changes to
the guest OS source code, e.g SymCalls [22], Overshadow
[6], InkTag [15], or installing custom drivers in the guest OS,
e.g. SecVisor [31] and Lares [27]. Even if such a strategy
could lead to a better performance, it is either not applica-
ble for closed-source OSes, or too intrusive, being easily
detectable by malware and potentially vulnerable to attacks.
We chose the non-intrusive alternative, although it faces the
semantic gap problem.

Different by systems like Geiger [19], Antfarm [18],
Lycosid [20], Ether [7], Virtuoso [8] that try to reduce the
semantic gap by inferring guest OS semantic information
relying only on virtualized hardware, we adopted an OS-
dependent solution. Even if not so general, we based our
protection method on general enough data structures (e.g.
process/thread list, loaded modules, heaps) that exist in most
OSes (e.g. Windows and Linux) and could easily be located
by an introspection engine, making it easily portable. We
found our approach more appropriate for production systems,
where performance and precision are important require-
ments. Yet, we also use OS-independent techniques to deal
with swappable pages.

Some solutions like NICKLE [28], SecVisor [31], Lares
[27], RTKDSM [14] deal with protection of the guest OS’
code or data structures, others like VMST [10,11] and Vir-
tuoso [8] introspect guest OS structures, but none could deal
with the user-space. This is complementary to our work. Still,
we rely on the kernel code being protected. Besides, we also
use similar techniques but for protecting user-process struc-
tures of interest.

There are some security solutions that explicitly aim pro-
tecting the user processes. Systems like SP3 [39], Over-
shadow [6] and InkTag [15] protect trusted user-processes
by a totally untrusted guest OS. They base their method on
encrypting the protected pages of the user-processes and pre-

123

Author's personal copy

U-HIPE: hypervisor-based protection

senting the OS with the encrypted version of those pages,
while the trusted application with the decrypted version.
While an appealing method, it must control the way the guest
OS changes the paging structures of protected processes. We
consider this to interfere too much with the guest OS’ internal
policy, leading to unpredictable performance results.

Patagonix [24] intercepts execution attempts to uncover
any user-space page containing code. Based on executable
file formats they check the detected executable pages against
a user-defined database, blocking any attempt to execute
unauthorized code. Even if less general, our solution could
perform better, since we directly identify from guest OS
structures the user-process pages that must be protected. This
way we could block directly any execution on certain process
area and do not need checking the code against a database,
which is difficult to maintain in practice.

In [34] hardware performance counters are used to mon-
itor certain types of instructions. They propose a method to
protect the user/kernel stacks against stack smashing attacks.
Contrary, we protect other process areas, as well. Besides,
their method is more or less about monitoring instructions
and could be difficult to adapt for different other attack types.

Very few [21,22,25] of the below-OS systems protecting
either the guest OS or user-processes take into account the
problem of swappable pages. Systems dealing exclusively
with the kernel space consider it to be non-swappable, which
is not always the case. Obviously, user-process pages could
be often swapped-out. Having to introspect them could be
required even for kernel protection systems. Our solution
to this problem is totally OS-independent, relying only on
the paging structures and mechanisms supported by the Intel
architecture.

IntroVirt [21] is similar to our system in the way they deal
with user-process introspection. They detect attacks running
known-vulnerability predicates inside the guest VM, taking
advantage of the guest OS functionality, like address trans-
lations and access to swapped-out pages. They place break-
points on different low-level guest OS functions to detect
swap in and out events, like we do. Similar to the way we
deal with swappable pages, their solution is OS-dependent,
while our is OS-independent.

3 Threat model and assumptions

We make the following assumptions regarding the character-
istics of the environment our security tool will run into, such
that to be effective:

– The processors provides hardware virtualization sup-
port (e.g. Intel VT-x, AMD-V, ARM Virtualization
Extensions) with the following extensions: second layer
address translation (SLAT) (e.g. Intel EPT, AMD RVI),

I/O memory management unit (IOMMU) (e.g. Intel VT-
d, AMD-Vi, ARM SMMU) and trusted execution (e.g.
Intel TXT, ARM TrustZone TEE). SLAT is used to pro-
tect memory pages. IOMMU is needed for protection
against DMA attacks [37], which can, otherwise, easily
bypass EPT protection. Trusted execution support is used
to measure the integrity of a launched software.

– The trusted computing base (TCB) is formed by the phys-
ical hardware, the firmware, the hypervisor and our secu-
rity tool.

– The booting process (firmware, hypervisor loader, hyper-
visor itself, and our security tool) is measured for integrity
using the trusted execution technology. This way we are
sure the security environment we build is the authentic
trusted one. The integrity of the protected VM’s OS ker-
nel is also measured at the moment it is launched. This
is important for our method, since we suppose we start
protecting an uncompromised guest OS.

– Certain guest OS’s sections (e.g. kernel’s code, kernel
driver’s code, critical kernel and driver data structures,
system call dispatch table) are protected by techniques
like those described in [28,31]. Our solution also applies
similar techniques to protect the kernel data structures
and code it uses. However this is not the topic of this
paper so we will not concentrate on it.

The threat model we consider consists in:

– The host machine can undergo a secure boot, checking
for integrity of the hypervisor.

– During the guest OS initialization phase, kernel security
protection could be activated, with no attack risks.

– During the runtime, the guest OS could be attacked by
kernel exploits.

– The security attacks we must face are: (1) hook insertion,
(2) return oriented programming (ROP) based on heap
or a stack overflow and execution of injected code, (3)
unpacked code execution.

4 Intel virtualization support

4.1 General overview

Intel VT-x [16] enables a hypervisor to fully emulate the
underlying hardware for one or more guest VMs. The hyper-
visor runs in a new more privileged VMX root operation
mode, while the guest code runs in a less privileged VMX non-
root operation mode. VM control structure (VMCS) fields
allow the hypervisor to enable VM exits, i.e. traps of the CPU
from guest to host (hypervisor), to be triggered on certain
events happening in the VM, like execution of a privileged

123

Author's personal copy

A. Luţaş et al.

instruction. After handling the VM exit, the hypervisor passes
the control back to the VM by doing a VM entry.

4.2 Memory virtualization

The Extended Page Tables (EPT) mechanism was added to
assist the memory virtualization. The EPT is configured by
the hypervisor and acts as a second layer of address transla-
tion. When paging is activated in a non-virtualized environ-
ment, the Memory Management Unit (MMU) uses paging
structures to translate a virtual address to a physical address.

When the EPT are configured by an hypervisor, a sec-
ond translation phase is added. In the first phase the CPU
translates a guest virtual address (GVA) into a guest physi-
cal address (GPA), using paging structures inside the guest
OS. In the second phase the CPU translates the resulted GPA
into a host physical address (HPA), using the EPT.

The EPT also control the access rights on a certain GPA.
Three different access types can be configured individually:
read, write and execute access. If any of these is denied, the
corresponding type of access on that page will trigger a VM
exit with the reason “EPT violation”. The hypervisor will
handle this violation: it might emulate or simply skip the
faulting instruction. This mechanism sits at the heart of our
solution to provide memory protection that is otherwise very
difficult to achieve.

The way EPT are used is illustrated in Fig. 1. Details about
protection settings will be given below.

4.3 Event injection

Sometimes, certain events need to be injected inside one
guest VM from the hypervisor, for various reasons. The most
common are the external interrupts. Injection of faults, traps
or exceptions is also supported, allowing the hypervisor to
simulate events that did not actually take place inside the
VM. The event injection mechanism allows the delivery of
an event together with an error code, if necessary. The event
will be handled by the CPU when the control is passed back
to the guest OS. Injection of certain events requires additional
settings. For example, in case of a page-fault exception injec-
tion, the CR2 register must contain the address the page-fault
was “generated” on. This mechanism is also crucial in our U-
HIPE, since it allows us to access swapped-out guest virtual
pages.

5 User-process protection mechanisms

5.1 Challenges

Whenever a new process is created, U-HIPE should be able
to decide, based on user-defined policies, whether to acti-

vate protection on it or not. It must then start monitoring the
process for thread stacks creation, heaps creation and mod-
ules loading, to activate protection on them. In order to do
that, U-HIPE must be able to intercept the following events:

1. process/thread creation and termination;
2. heap creation and termination;
3. module loading and unloading.

Correspondingly, it must identify, in each case, the memory
pages that must be protected.

There is, though, a significant challenge in achieving this
for user-space memory, because it is normally pageable. This
means that at any given moment, a virtual page needed for
introspection and protection may be swapped out, i.e. non-
present in memory. This poses two new issues:

1. How to access a page if it is not present inside the physical
memory?

2. How to achieve protection on pages that are being
swapped in and out of the physical memory due to the
guest OS page replacement policy?

5.2 Events interception and memory protection

Event detection is based on placing hooks on certain ker-
nel functions or write-protecting certain kernel or user-space
structures. Function hooking is not the scope of our paper. It
is described in papers like [27,36].

The most important events U-HIPE must intercept are
process creation and termination. The protection should be
activated before the process is visible and attackable by
malicious processes. When a process terminates, U-HIPE
must cleanly remove its protection. These actions could
done by either: (1) hooking the kernel functions that acti-
vate/deactivate a process (we will present in Sect. 7 such
functions for Windows OS), or (2) intercepting memory
events that are specific to the process creation, such as
changes to the guest OS’ process list.

The later technique could be done activating “read-only”
hardware protection on the corresponding pages. Whenever a
new node will be added or an old node removed, writes will
take place inside this list, and the corresponding memory
violation will indicate U-HIPE that a new process has been
created or a process has been terminated.

Similar techniques are used to intercept thread creation
and termination for a protected process. At thread creation,
its user-mode stack must be identified, usually using kernel or
user specific data structures. The type of protection U-HIPE
places on the stack pages is “no-execution”. When a thread
terminates, the protection of its stack is removed.

Inside the user realm, we need to intercept heap creation
and termination and user mode modules loading and unload-

123

Author's personal copy

U-HIPE: hypervisor-based protection

Fig. 1 EPT protection settings for different pages in the user process.
Code pages refer to both statically loaded code and dynamically loaded
libraries. It could be noted that the code pages are restricted for being

changed (i.e. “no-write” protection), while other pages are restricted for
execution (i.e. “no-execution” protection)

ing. U-HIPE intercepts these events by placing “read-only”
protection on the structures describing the process: the list of
loaded modules and the list of heaps. If necessary, intercep-
tion of other events, such as user-mode library APIs, could
also be done.

All of these events will eventually be used in order to
activate: (1) “no-execution” protection on the newly created
heaps, and (2) “no-write” protection on the newly loaded
shared libraries.

The EPT protection on the different page types is illus-
trated in Fig. 1. In order to keep the picture clear, we did not
figure the “read-only” restrictions on the EPT entries that
map the VM pages containing the process’ page tables (see
below in relation to the technique we use to keep page pro-
tection on swappable pages). Though, they are similar to the
illustrated EPT entries and could be easily imagined taking
into account that page tables themselves are also stored in
guest physical memory frames, which need to be mapped
onto the host physical memory through EPT entries.

5.3 Memory protection maintenance

Inside EPT, U-HIPE manipulates only GPAs and HPAs.
Although, protection must be applied on GVAs. Therefore, if

U-HIPE must protect a guest virtual page, that page’s GVA
must be translated to its corresponding GPA using the guest
OS’ paging structures. The found GPA can then be protected
in its corresponding entry in EPT.

Some problems could arise when the guest virtual page
(at GVA) is swappable, because the guest physical page (at
GPA) it is mapped on could be changed due to the swapping
operations in guest OS. Let us assume the followings: (1)
U-HIPE must protect a virtual page, whose address is GV A;
(2) GV A translates to G P A, via the guest OS’ page tables;
(3) U-HIPE protects G P A using the EPT. We could have the
following problematic situations:

1. False protection. The guest OS swaps out GV A and
replaces it with GV A∗, which is mapped now on G P A.
In this case, U-HIPE could still protect G P A, even if
the target virtual page’s GV A does not point to it any
more. Actually, the protected page would be in the new
configuration the arbitrary GV A∗.

2. Lost protection. The guest OS swaps out GV A and maps
nothing else to G P A. Later, it swaps back in GV A, but
maps it to G P A∗. In this case, U-HIPE could lose the pro-
tection on GV A, since it could still protect G P A instead
of G P A∗.

123

Author's personal copy

A. Luţaş et al.

3. Wrong protection. The guest OS remaps GV A from
G P A to G P A∗, without actually swapping the virtual
page. This case is a sort of a combination of the previ-
ous two ones: as long as G P A is not allocated to another
GV A∗, U-HIPE would suffer by lost protection, whereas
as long as the G P A would be allocated to another GV A∗,
U-HIPE would also suffer by false protection.

Figure 2 illustrates the three cases of protection problems
mentioned above: Fig. 2a illustrates the normal protection
mechanism, Fig. 2b the lost protection situation, and Fig. 2c
both lost and wrong protection.

In order to avoid such problems, U-HIPE applies EPT
“no-write” protection on the guest OS’s paging structures
themselves. This way, every time a certain guest virtual page
is being swapped in or out and its corresponding page-table
entry (PTE) must be changed, EPT violations will be trig-
gered, which U-HIPE intercepts and handles to adapt its
protection correspondingly. It decodes the faulty instruction,
extracts the new value of the PTE that is tried to be written
and compares it with the current (old) value, to infer if the
corresponding page is:

1. swapped-in: the present bit has a transition from 0 to 1;
2. swapped-out: the present bit has a transition from 1 to 0;
3. remapped: no transition of the present bit, but a change

of the GPA.

Other times, the guest OS might only try modifying other
bits in a PTE (e.g. read/write bits or OS specific bits). In
such cases, the corresponding write operation will be simply
ignored by U-HIPE, since there is no present bit transition
and no GPA change.

There are still some other problems that must be taken into
account:

1. Non-present page tables. The guest OS page table con-
taining the PTE of a protected page could be freed
and made non-present itself whenever there is no page
mapped using it. In such a case, U-HIPE must place EPT
“no-write” protection on the upper level paging structure
(page directory, in Intel terminology). This method must
be extended to the full hierarchy of the translation paging
structures.

2. Shared Pages. This is the case, for instance, of shared
libraries, which are physically allocated one time, but
mapped inside the virtual address space of every process
using them. When such libraries contain writable pages,
those pages are dealt with by the guest OS using the
“copy-on-write” strategy. Every write on a “copy-on-
write” page, triggers a page-fault exception inside the
guest OS, letting it allocate a private copy of that page
for the writing process and change correspondingly the

process’ page table. Based on the “no-write” protec-
tion placed on the guest OS page tables, U-HIPE inter-
cepts changes implied by the copy-on-write mechanism
and transparently adapts its protection like in the page
remapped case described above.

5.4 Multi-core support

We also considered the cases of Symmetric Multi-Processor
(SMP) systems. Actually, the only thing that is influenced by
running our security component on such a system is the way
the EPT structures are managed. There are two strategies:

– Centralized EPT : there is a single set of EPT, which are
shared among all VMCSs assigned to the virtual CPUs
given to a VM. This way, protection settings are con-
sistent among all virtual CPUs. Though, in order this
method to be effective, concurrent changes on the EPT
entries coming from the multiple CPUs must be synchro-
nized. This could be easily done in practice using a sort
of spin-lock.

– Distributed EPT : there is a different set of EPT for each
different VMCS (implicitly, for each virtual CPU). The
difficulty with this method is that all EPTs must consis-
tently reflect the same memory contents and page protec-
tion settings, which also requires a sort of synchroniza-
tion between the virtual CPUs.

We decided for the centralized strategy, while it is sim-
pler to implement and also benefits from memory saving.
A sort of CPUs consistency maintenance is still needed in
this case, too. This is because each CPU has its own TLBs.
When protection settings inside an EPT entry are changed
by one processor, it invalidates its corresponding TLB entry.
That processor sends (after applying the changes) the other
processors an IPI (i.e. inter-processor interrupt) message to
also make them aware of the changes. In response, they invali-
date the corresponding entries in their own TLBs. Such inval-
idation could be made, for instance, on x86 architecture by
using the INVEPT CPU instruction.

6 Introspection of swapped-out user-process pages

We saw in Sect. 5 that U-HIPE needs to introspect and protect
pages inside both the guest kernel and user spaces. There
would be, though, a problem, if U-HIPE tries to introspect a
swapped-out page.

The solution we propose is to leverage the existent page-
fault (PF) handling mechanism of the guest OS. Any time
U-HIPE needs accessing a swapped-out guest page, it will
inject a page-fault in the guest VM. This way, U-HIPE makes
the guest OS thinks that some process inside the guest VM

123

Author's personal copy

U-HIPE: hypervisor-based protection

Fig. 2 Page protection anomalies. a The state of entries in process
page tables (controlled by the guest OS) and EPT (controlled by the
hypervisor) to protect a certain virtual page at the GVA guest virtual
address. The protected GVA page is loaded (present) in the physical
memory. b False protection due to wrongly keeping protection settings
in the EPT entry, even if the corresponding guest/host physical memory
frame was loaded with the contents of another process virtual page, due
to the page replacement policy in the guest OS, i.e. the protected GVA

page was swapped out, while an unprotected GVA* page was swapped
in. c Lost protection happens when a protected process virtual page is
swapped out from a physical memory frame and then swapped back
in another frame, due to page replacement policies in guest OS, yet
the EPT entry keeps protection on the first frame. Wrong protection is
like false protection, but not having the protected virtual page being
swapped out and in, only moved (and consequently, remapped) in the
physical memory.

123

Author's personal copy

A. Luţaş et al.

tried accessing a swapped-out page, and swaps it back into
the physical memory, using the normal internal swapping
mechanism.

6.1 Page-fault exception

The PF exception is a hardware exception triggered whenever
the MMU cannot access a virtual address. A PF is generated
when: an instruction accesses a non-present page, an user-
space instruction accesses kernel memory or write inside a
read-only page, CPU tries to fetch instructions from a non-
executable page, etc. OS handles the exception, deciding
what to do. If the page was swapped-out, it will swap it back
in memory.

6.2 Page-fault injection and handling

When a page-fault (PF) is generated, the CPU communicates
the OS the reason for the page-fault and the faulty address.
This information is provided on Intel processors via the page-
fault error code (PFEC) for the fault reason and the CR2 reg-
ister for the faulty address. U-HIPE loads the corresponding
fields in the VMCS with expected values (e.g. CR2 with the
GVA of the needed swapped-out page), when injecting a PF.

We noted that most OSes do not check the faulty instruc-
tion. Because of this, we do not have to worry at all about
the instruction the IP register points to when we inject the
page-fault.

The next thing U-HIPE needs to solve is to determine the
moment the swapped-out page is back in memory. For this,
it must intercept the corresponding swap-in event. The way
to do this is based on protecting for “no-write” the guest OS
page table and was described in Sect. 5.3.

PF injection could also face the situation when a page
table itself is not present in memory. In such a case, intercept-
ing the needed swap-in event functions in two steps: inter-
cepts the swap-in of the page table containing the PTE of the
needed page, then intercept the swap-in of the page itself.
This multi-step interception is based on “no-write” protection
of the higher-level paging structures and was also described
in Sect. 5.3.

When the waited swap-in event is intercepted, U-HIPE
can read the needed page from the GPA it will be mapped.
When this actually happens depends on the OS and its sched-
uler. Usually, the injected PF is processed immediately, but
if a clock or inter-processor interrupt is delivered to the han-
dling CPU, the actual processing of the PF will be post-
poned.

Another aspect U-HIPE must deal with is the PF injection
moment. For a user-space page, a PF should normally be
injected when the IP register points inside a user-space code
segment. For most user-space pages U-HIPE must protect,
it intercepts user-mode events (e.g. heap creation, module

loading), when the IP is in user-space, so the injection could
be done immediately. Other intercepted events (e.g. thread
creation) correspond, however, to kernel-mode. In this case
U-HIPE protects the PTE of the needed swapped-out page
and postpones the PF injection until the next user-mode event
interception. If in the meantime the guest OS swaps in the
needed page, U-HIPE will intercept the corresponding swap-
in event and introspect immediately the page, needing no
more a PF injection.

A PF injection could also be performed when the IP points
inside the guest kernel, for either a kernel or a user page. How-
ever, several other validations to avoid possible race condi-
tions might be needed. They are though very OS-dependent
and we do not deal with them here.

7 U-HIPE implementation on Windows

We implemented and tested a prototype of U-HIPE on dif-
ferent MS Windows OSes for both x86 and x64 processors,
starting with Windows Vista and up to the latest Windows
8.1. Certain information is, however, version dependent, such
as various offsets inside the kernel data structures we used,
mainly because these structures are opaque and not officially
documented. Therefore, the current description of the imple-
mentation will be strongly dependent on this type of OS.
The steps described in Sect. 5 will be detailed in this section
specific to Windows OSes.

Another important aspect that must be mentioned is the
fact that while we access user-mode memory, we never do
any assumption with regard to the accessed memory: if the
required memory is present, we will simply access it, but if
it is not, we will use the mechanisms described in Sect. 6 in
order to access swapped-out memory. Although most of the
times all these structures will be mapped inside the physical
memory, sometimes, especially when the memory pressure
is high, these structures may be swapped out of the physical
memory.

7.1 Intercepting process creation and termination

Process creation is intercepted using the internal kernel func-
tion PspInsertProcess() [30], which basically inserts
a newly created process inside the system’ process list.
Process termination is intercepted using the internal ker-
nel function PspCleanupProcessAddressSpace().
Both functions are identified using binary patterns matching
on the functions’ contents (signature).

Another method would be to write-protect pages contain-
ing nodes of the list of all currently active processes, pointed
to by PsActiveProcessHead. By intercepting all write
operations performed on this list, U-HIPE basically inter-
cepts process creation and termination events.

123

Author's personal copy

U-HIPE: hypervisor-based protection

The main drawback of the first method is the fact that
function signatures must be extracted for each supported
OS, and the main drawback of the second method is the
significant performance impact, since the virtual mem-
ory pages that contain the list nodes could contain vari-
ous other structures that may be written very often. The
main advantage of the first method is its performance,
while the main advantage of the second one is its simplic-
ity.

In our implementation, we opted for the first approach,
which offers the best performance.

The structure that is used by U-HIPE is the EPROCESS
structure. This structure describes the process at the ker-
nel level. Inside this structure we access two important
fields: the DirectoryTableBase field inside the Pcb
sub-field of the EPROCESS structure, which is the PDBR
(Page Directory Base Register, i.e. CR3) of the newly cre-
ated process, and the Peb field, which will point to the
user-mode PEB (Process Environment Block) structure that
identifies the user-mode part of the process. If the process
is a 32-bit process started on a x64 version of Windows,
a new field will be used: Wow64Process, which con-
tains a pointer to the PEB structure that identifies the 32-
bit subsystem of the newly created process, while the ini-
tial Peb field contains a pointer to the 64-bit PEB of the
process.

7.2 Intercepting thread creation and termination

After a protected process was started and the initial protection
activated on it, thread creation is intercepted. U-HIPE inter-
cepts the function PspInsertThread() that inserts a
newly created thread inside the list of active threads, function
PspExitThread() for the case a thread terminates itself,
and function PspTerminateThreadByPointer() for
the case a thread is terminated forcefully by another
thread.

Alternatively, we could intercept the ThreadListHead field
inside the EPROCESS structure of the associated process,
which contains the list of all the process’ threads. The advan-
tages and disadvantages of these methods are identical with
the ones described for the process creation and termination
interception.

The used structure was the ETHREAD structure, which
describes a thread. The most important field used from this
structure is Teb inside the Tcb subfield of the ETHREAD
structure, which points inside user-mode to a TIB (Thread
Information Block) structure, which contains the base addr-
ess of the threads stack: this base address will be used in order
to activate stack “no-execution” protection. Once a thread
has terminated, the protection on the underlying stack will
be removed.

7.3 Intercepting heap creation and termination

Inside theTEB structure, the fieldProcessHeaps points to
an array containing the addresses of each process heap. Field
MaximumNumberOfHeaps identifies the maximum num-
ber of heaps that can be stored inside the ProcessHeaps
array and NumberOfHeaps the current number of heaps. A
write interception inside the ProcessHeaps enables us to
identify heap creation and termination. When a heap is cre-
ated, “no-execution” protection will be activated on it. When
a heap is destroyed, the protection will be terminated. The
size of the heap will be determined from the heap descrip-
tor itself. In order to detect when the process has created
more than its maximum number of heaps, we intercept the
ProcessHeaps field inside the PEB. When the OS writes
this field, we will simply move interception on the new array,
which will usually be larger than the previous one. This is
basically a “realloc” operation for the heaps array.

7.4 Intercepting modules loading

Interception of libraries loading is also based on PEB. Field
Ldr points to a _PEB_LDR_DATA structure, which contains
a linked list of user-mode libraries that are currently loaded
inside the process. In order to intercept module loading, U-
HIPE protection as “no-write” the loaded modules list. The
mechanism is identical with the interception of the processes
or threads lists described earlier.

Whenever a new module is loaded, its associated structure
LDR_MODULE is parsed. This structure contains all the infor-
mation about the given module: the path, the base address and
the size. Based on the path, U-HIPE decides whether to acti-
vate hook protection on the given module or not. The hook
protection will apply to every non-writable section of the
module, including the Import Address Table (IAT) and the
Export Address Table (EAT). Special treatment is provided
for the main module, which is the first module that gets loaded
(before Windows 8) or the second one, after ntdll (starting
with Windows 8). It is protected against unpacking code, in
order to detect possible infections with file-infectors.

7.5 Implementation and debugging details

Both U-HIPE and our hypervisor have been written in C.
The code size of U-HIPE is roughly 100K LOC, but also
including features not described here as being outside the
scope of this paper.

The debugging was performed using the serial port: the
hypervisor was designed to both send log messages and
accept control commands on the serial port. Therefore, both
logging facilities and command interpretation were avail-
able inside both U-HIPE and the hypervisor at any moment.
The guest OS has been debugged using the native Windows

123

Author's personal copy

A. Luţaş et al.

debugger WinDbg, via a IEEE 1394 (Firewire) connection.
This was needed in order to check and analyze certain guest
OS’s structures and functions used by U-HIPE. Examples
include the hooked internal functions and the internal OS
structures, such as the EPROCESS, ETHREAD, TEB, PEB
and so on.

7.6 Avoiding Windows’ internal protection

It is known that the 64-bit editions of MS Windows have an
internal kernel protection mechanism against kernel function
hooking. The protection mechanism is called Kernel Patch
Protection (KPP) or PatchGuard [30]. Normally, Patch-
Guard would be able to detect the fact that our security
solution would have changed (i.e. hook) the addresses of
some kernel functions, like the ones for process/thread cre-
ation.

We developed two methods to avoid such a protection:

1. Apply the hooking before the PatchGuard observes the
initial kernel function addresses. This way PachGuard
takes the U-HIPE’s hooked functions as the original Win-
dows’ ones. The difficulty of this method is the way the
appropriate hooking moment is determined. In the Win-
dows versions we implemented U-HIPE for, we found
a moment during the kernel initialization before which
PatchGuard is not yet active, particularly when MSRs
such as the syscall MSR is being initialized. The problem
of this solution is that in future Windows versions Patch-
Guard may initialize earlier and thus render our method
useless.

2. Apply the hooking mechanism any time, but restrict
the access to the pages containing the changed func-
tion addresses (e.g. configure “‘no-read” access in the
corresponding page table entries in EPT), such that any
attempt to read the hooked function addresses will trigger
an access violation exception in the hypervisor, giving it
the possibility to return the original content as the result
of the read operations. Otherwise, code execution inside
these pages will be carried out normally, without faults.

The main advantage of the first technique is its perfor-
mance. On the other hand, it is not totally transparent, letting
the PatchGuard see other function addresses than the origi-
nal ones. On the contrary, the second method provides per-
fect transparency, but at the cost of a performance penalty,
while each read access to the page containing the function
addresses will generate an access violation exception. Fortu-
nately, usually only PatchGuard reads these pages and it does
so only rarely (once every several minutes or so), such that
the performance penalty is not a real problem in practice.

Regarding the other event interception method we used,
i.e. setting in EPT write restrictions on the pages containing

data structures supposed to be changed in relation to the mon-
itored events, it could not be even detected from inside the
guest OS, so the interception mechanism is totally transpar-
ent for the PatchGuard in this case. Actually, this technique
is independent on the guest OS, so it has no particularities
for Windows.

8 Security analysis

8.1 Security properties

U-HIPE is immune to direct attacks from the guest VM
due to its isolation imposed by the hardware. Its memory
cannot be accessed, since the CPU forbids this due to the
SLAT mechanism. DMA attacks can also be avoided if the
hypervisor uses an IOMMU. U-HIPE cannot also be dis-
abled or malfunctioned by malware, since we assumed that
the boot process is measured using trusted execution tech-
nology.

Though, since U-HIPE depends on information extracted
from the guest, if it would contain vulnerabilities, it could
be exploited by an attacker capable of providing it specially
crafted data able to trigger the vulnerability. However, due to
its small size and simplicity it could tested and verified more
easier than a normal OS.

Another way of attacking U-HIPE is the denial of service
(DoS), but this would be of little use for the attacker, since
a DoS attack on U-HIPE would result in a DoS on the guest
OS itself, and thus rendering the malware inert.

The events the U-HIPE protection is based on will always
be triggered correctly (e.g. an EPT violation) because the
attacker cannot reconfigure the hardware memory protection
imposed by U-HIPE. Thus, as long as a process exists, all
its associated structures are protected. The only apparently
possible problem would be an attack on a protected process’
memory structures, launched from within a compromised
guest OS kernel. Since the kernel is normally more privi-
leged than the user mode, a kernel rootkit could maliciously
change and manipulate the process’s page tables to bypass
the process’ protection. However, even this type of attack is
limited, since the process’ page tables are protected and any
page table change is intercepted by U-HIPE. Thus simply
remapping or reallocating process’ memory would be of no
use for the attacker, as the protection would simply be moved
to the new pages.

Regarding the page-fault injection, it could be a security
issue if an attacker could somehow gain control of the guest
OS’s PF handler functionality. This way, the attacker could
provide U-HIPE with fake GVA and false information, and
thus avoid protection. However, as previously mentioned in
Sect. 3, we assume that the kernel code is also secured, so
we consider the guest’s PF handler to be trusted.

123

Author's personal copy

U-HIPE: hypervisor-based protection

8.2 Prevented attacks

Polymorphic/Packed viruses [33] infecting a user-process
executes decoding/unpacking code that writes sequences of
bytes, i.e. decrypted/unpacked code, into process’ own mem-
ory and tries to execute them later, an anomaly described
as “execute-after-write”. U-HIPE could block such attacks
by applying “no-execution” protection on previously written
pages.

Hook attacks in a user-process try to redirect functions
in the loaded libraries by changing IAT/EAT entries or the
function starting code.

Each process contains a main-module, which is the actual
application’s code that gets executed, and a number of shared
dynamic libraries. Some of these libraries contain OS code,
including APIs that will get called by the main module. If a
malware gets access to a certain process, it can interfere with
the normal execution by placing hooks on certain functions
inside these libraries. Types of hooking include function-
table hooking (modifications inside IAT of a certain module
or inside the EAT of the attacked library) and in-line function
hooking, that involves replacing the first few bytes of a func-
tion with a branch instruction to a piece of malicious code. In
both cases, the introspection engine will protect as “no-write”
(i.e. “read-only”) the virtual memory pages that contain the
IAT, the EAT and the code and write attempts inside these
pages will be forbidden. Basically, whenever someone tries
to hook a function (either via IAT/EAT or in-line), an EPT
violation will be triggered. U-HIPE will analyze the attempt,
and if it decides it is malicious, it will block it by skipping
the faulting instruction and thus blocking any modification
to the contents of the protected memory page.

U-HIPE can also block attacks that exploit vulnerabilities
(like buffer overflow) allowing malicious code to be injected
and then executed from the stack or heaps of the vulnerable
process. U-HIPE protection for this type of attacks is based
on the “no-execution” restriction on the process’ heaps and
stacks.

Although the heaps and the stacks of a process (also the
written code pages mentioned above) should also be flagged
by the guest OS as being “non-executable”, a malicious pay-
load can easily bypass this protection [29] by removing the
“non-execute” flag on the subsequent heap or stack. Though,
if the “no-execution” protection is activated and controlled
from the hypervisor, it cannot be removed, and the attacks
could be blocked.

Unfortunately, as it is known, the “no-execution” pro-
tection cannot fight against return-oriented-programming
(ROP) attacks, which are not based on malware-injected
code, but on small code sequences found in standard loaded
system libraries. Such attacks, which do not need the heap
or the stack hosting any injected code, cannot be detected by
U-HIPE.

9 Tests and results

We used a system with Intel Core i7-2600 CPU running at
3,400 MHz, 8 logical threads (4 cores with HT) and 16 GB
of DDR3, running Windows 7 × 64 with SP1. Tests were
performed on both real and synthetic user applications. Same
tests were run more times with and without U-HIPE activated
and the average results calculated.

9.1 Performance

The performance impact introduced by U-HIPE is given by
both the virtualization mechanisms it uses and the actual
processing it does.

9.1.1 Benching application startup time

The startup time penalty for a protected process varies with
the number of objects that process creates during its initial-
ization and correspondingly, U-HIPE needs to introspect and
protect. A process that creates many heaps and threads will
start slightly slower than another one creating not as many.
PassMark AppTimer [32] was used to measure the penalty
induced by U-HIPE on different applications startup time.

Figure 3 and Table 1 illustrate the results for several appli-
cations run with their default configuration. For some appli-
cations, e.g. Chrome, Opera, and Internet Explorer, the per-
formance impact is higher (startup time increased by about an
order of magnitude, compared to the “no-protection” case),
because they spawn other processes, which being also pro-
tected by U-HIPE increases the performance penalty. Simple
processes, such as the Calculator, have a much smaller perfor-
mance impact, i.e. about 22 %. We also measured the internal
processing overhead induced by U-HIPE to introspect and
protect user-process structures for each application. This is
illustrated by the third bar in Fig. 3 and last column of Table 1.
It is much lower than the overall overhead detected from the
user space in guest VM. This is because U-HIPE was imple-
mented inside an experimental in-lab hypervisor. We admit
the hypervisor overhead is implied by our protection needs,
still we estimate that further optimizations of the hypervisor
would significantly decrease the overall performance penalty.

We also noted that the performance overhead increases
linearly with the number of objects (stacks, heaps, modules)
U-HIPE must protect for a process. In real applications the
number of such objects is about few tens during the entire
lifetime of a process and with just few of them being cre-
ated/terminated at one moment. Thus the overall impact is
relatively smaller in practical cases. Moreover, this impact is
mostly the startup penalty. This is revealed by Fig. 4, which
illustrates a normal usage of a custom application that iterated
through all the files of a hard disk, read their entire contents

123

Author's personal copy

A. Luţaş et al.

Fig. 3 Cumulated overhead over the start-up time of different
processes

in memory and encrypted them. The tests revealed an overall
impact of less than 4 %.

9.1.2 Page-fault injection penalty

The page-fault injection usually had a minimal impact on
the page replacement policy of the guest OS. On average, we
injected less than ten for the pages containing the needed data
structures. Page-fault injection timings vary due to OS thread
scheduling and disk load. We ran 1,000 tests measuring the
time took from the moment of the page-fault injection and up
until the moment the page was swapped in and U-HIPE was
notified. We got an average time of approximately 0.0149 ms
for one such operation.

Another factor regarding the performance overhead intro-
duced by U-HIPE would be the effect of page-fault injec-
tions on the TLB configuration, especially in cases when
TLB would be full. In such a situation, injecting a page-fault
would lead to a TLB entry replacement, just to make place
for the mapping of the page requested by U-HIPE. Even if

Fig. 4 Cumulated overhead over the entire runtime of a process

we did not performed such specific tests (it would have been
difficult to create and precisely evaluate in real applications
the described scenario), we consider that they were covered
by the tests we did. Moreover, as we already mentioned, there
was a need for only few tens of page-fault injections during
the entire lifetime of any tested process, which surely did not
have a significant influence on the overall performance.

On the other hand, there are some aspects that make our
hypervisor-based introspection perform even better that a
similar tool integrated in the guest OS. One such aspect is
related to the way TLBs are used. Basically, there are two
types of TLB entries maintained when EPT are used: one for
virtual to physical guest memory mappings and one for guest
to host physical memory mappings. Running the introspec-
tion code outside the VM will not impose extra pressure on
the TLB entries mapping guest addresses, as it would an in-
guest introspection. The only possible performance penalty
would remain that implied by the U-HIPE requests for addi-
tional swapped-out pages (i.e. injected page-faults). Though,
in such cases the performance penalty incurred by the TLB

Table 1 Measurements of
different applications’ startup
time in cases protection was
activated or not

Application Startup time
(no protection)
[s]

Startup time
(protection) [s]

Introspection
processing
time [s]

Overall
overhead [%]

Introspection
overhead [%]

IE 0.0101 0.49515 0.02725 4802.48 269.80

Opera 0.0769 0.43932 0.01124 471.28 14.62

Firefox 0.5604 1.70275 0.11489 203.85 20.50

Chrome 0.12549 1.44739 0.09273 1053.39 73.89

Acrobat Reader 0.07258 0.52359 0.05852 621.40 80.63

MS Office 0.03241 0.03841 0.00331 18.51 10.21

Notepad 0.03347 0.06518 0.00461 94.74 13.77

Calculator 0.05352 0.06532 0.00589 22.05 11.01

123

Author's personal copy

U-HIPE: hypervisor-based protection

misses is in practice irrelevant, compared with that implied
by the disk operations (i.e. few orders of magnitude smaller).

9.2 Protection

U-HIPE was successfully tested against a variety of malware.
Tests with malicious applications were performed on a

freshly installed Windows OS running on a host system that
was disconnected from the network. The hypervisor and U-
HIPE started before the guest OS and activate protection as
soon as the OS starts to initialize. The malware samples were
manually run on the target system and alerts generated by U-
HIPE were observed.

Examples of malicious actions attempted by the tested
malware included execution of code injected on the stack
or heap of a currently monitored process or inside another
processes, polymorphic code execution and hook insertion.
These samples cover a wide class of attacks that U-HIPE
prevents.

In some cases, actions performed by rootkits were clearly
blocked on the target system, as was the case of Bagle [26] or
Agony that were prevented to hide their infected processes
and/or files. In some other cases, like the ZBot/Zeus trojan
[4], the protection effect was not directly visible because the
attempts to inject code inside the protected processes have
been completely blocked.

The stack smashing attacks were successfully detected
and prevented by running the exploits for some known vul-
nerabilities [35] in MS Office Word 2007.

The polymorphic code and hook insertion detectors were
also tested successfully on viruses that not only infect a target
program, but once such a target program gets executed, they
also attempt to hook certain APIs inside the host process.
Hooking prevention was tested on different types of hooking
technique: (1) hooks placed inside system DLLs (usually
user32.dll, ws2_32.dll and wininet.dll) as performed by file
infectors such as Virtob [3], Sality [2] and by malware in the
ZBot family, (2) hooks placed inside the IRP/MJ table of the
disk or atapi driver object, performed by TDL rootkit, and (3)
in-line hooks placed inside some kernel functions or SSDT,
as performed by Bagle or Agony.

Similar tests were performed on the Qhost [1] family and
various other password stealer and key-logger families.

10 Conclusions

We presented U-HIPE’s strategy for providing user-mode
processes protection from below the guest OS and its imple-
mentation on MS Windows. Its main contributions are:
(1) memory protection types on certain process components;
(2) maintenance of memory protection on swappable pages;

(3) page-fault injection mechanism to get access to swapped-
out pages.

U-HIPE uses an OS-dependent introspection strategy, yet
this is realistically applicable on production systems needing
precision. The performance impact is relatively high, espe-
cially on the startup time, compared with the no-protection
case. Though, it is acceptable as a compromise between
security and performance for normal user applications (e.g.
Internet browsers) usually targeted by malicious attacks.
Besides an optimized hypervisor could significantly reduce
this impact, as long as internal actions taken by U-HIPE do
not account too much on the overall user-space perceived
overhead.

Our main future research interests will mainly concentrate
on:

1. Proving the support for other operating system families,
such as Linux;

2. Improving the performance of U-HIPE, especially for
new process and thread launching operation.

Acknowledgments A. Coles, a’s work on this paper was supported
by the Post-Doctoral Programme POSDRU/159/1.5/S/137516, project
co-funded from European Social Fund through the Human Resources
Sectorial Operational Program 2007–2013.

References

1. Bitdefender: Qhost Virus Description. http://www.bitdefender.
com/free-virus-removal/#Trojan.Qhost.WU. Accessed 28 Jan
2015

2. Bitdefender: Sality Virus Description. http://www.bitdefender.
com/free-virus-removal/#Win32.Sality.OG. Accessed 28 Jan 2015

3. Bitdefender: Virtob Virus Description. http://www.bitdefender.
com/free-virus-removal/#Win32.Virtob.Gen. Accessed 28 Jan
2015

4. Bitdefender: Zbot Virus Description. http://www.bitdefender.com/
free-virus-removal/#Trojan.Spy.ZBot.EHE. Accessed 28 Jan 2015

5. Chen, P.M., Noble, B.D.: When virtual is better than real. In:
Proceedings of the Eighth Workshop on Hot Topics in Operating
Systems, HOTOS ’01. IEEE Computer Society, Washington, DC
(2001)

6. Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Wald-
spurger, C.A., Boneh, D., Dwoskin, J., Ports, D.R.K.: Overshadow:
a virtualization-based approach to retrofitting protection in com-
modity operating systems. SIGOPS Oper. Syst. Rev. 42(2), 2–13
(2008)

7. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analy-
sis via hardware virtualization extensions. In: Proceedings of the
15th ACM Conference on Computer and Communications Secu-
rity, CCS ’08, pp. 51–62. ACM, New York (2008)

8. Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., Lee, W.: Virtu-
oso: narrowing the semantic gap in virtual machine introspection.
In: IEEE Symposium on Security and Privacy (SP), pp. 297–312.
IEEE, New York (2011)

9. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.:
ReVirt: enabling intrusion analysis through virtual-machine log-
ging and replay. SIGOPS Oper. Syst. Rev. 36(SI), 211–224 (2002)

123

Author's personal copy

http://www.bitdefender.com/free-virus-removal/#Trojan.Qhost.WU
http://www.bitdefender.com/free-virus-removal/#Trojan.Qhost.WU
http://www.bitdefender.com/free-virus-removal/#Win32.Sality.OG
http://www.bitdefender.com/free-virus-removal/#Win32.Sality.OG
http://www.bitdefender.com/free-virus-removal/#Win32.Virtob.Gen
http://www.bitdefender.com/free-virus-removal/#Win32.Virtob.Gen
http://www.bitdefender.com/free-virus-removal/#Trojan.Spy.ZBot.EHE
http://www.bitdefender.com/free-virus-removal/#Trojan.Spy.ZBot.EHE

A. Luţaş et al.

10. Fu, Y., Lin, Z.: Space traveling across VM: automatically bridging
the semantic gap in virtual machine introspection via online Kernel
data redirection. In: Proceedings of the 2012 IEEE Symposium on
Security and Privacy, SP ’12, pp. 586–600. IEEE Computer Society,
Washington, DC (2012)

11. Fu, Y., Lin, Z.: Bridging the semantic gap in virtual machine intro-
spection via online Kernel data redirection. ACM Trans. Inf. Syst.
Secur. 16(2) (2013)

12. Garfinkel, T., Rosenblum, M.: A virtual machine introspection
based architecture for intrusion detection. In: Proceedings of Net-
work and Distributed Systems Security Symposium, pp. 191–206
(2003)

13. Gavitt, B.D., Leek, T., Hodosh, J., Lee, W.: Tappan zee (north)
bridge: mining memory accesses for introspection. In: Proceed-
ings of the 2013 ACM SIGSAC Conference on Computer and
Communication Security, CCS ’13, pp. 839–850. ACM, New York
(2013)

14. Hizver, J., Chiueh, T.c.: Real-time deep virtual machine intro-
spection and its applications. In: Proceedings of the 10th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, VEE ’14, pp. 3–14. ACM, New York (2014)

15. Hofmann, O.S., Kim, S., Dunn, A.M., Lee, M.Z., Witchel, E.: Ink-
Tag: secure applications on an untrusted operating system. SIG-
PLAN Not. 48(4), 265–278 (2013). doi:10.1145/2499368.2451146

16. Intel Corporation: Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual. 325462–050US (2014). http://www.
intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-manual-325462.pdf.
Accessed 02 Feb 2015

17. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection and moni-
toring through VMM-based “out-of-the-box” semantic view recon-
struction. ACM Trans. Inf. Syst. Secur. 13(2) (2010)

18. Jones, S.T., Arpaci Dusseau, A.C., Arpaci Dusseau, R.H.: Antfarm:
tracking processes in a virtual machine environment. In: Proceed-
ings of the Annual Conference on USENIX ’06 Annual Technical
Conference, ATEC ’06, pp. 1–14. USENIX Association, Berkeley
(2006)

19. Jones, S.T., Arpaci Dusseau, A.C., Arpaci Dusseau, R.H.: Geiger:
Monitoring the buffer cache in a virtual machine environment.
SIGARCH Comput. Archit. News 34(5), 14–24 (2006)

20. Jones, S.T., Arpaci Dusseau, A.C., Arpaci Dusseau, R.H.: VMM-
based hidden process detection and identification using Lycosid. In:
Proceedings of the fourth ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, VEE ’08, pp. 91–
100. ACM, New York (2008)

21. Joshi, A., King, S.T., Dunlap, G.W., Chen, P.M.: Detecting past
and present intrusions through vulnerability-specific predicates. In:
Proceedings of the Twentieth ACM Symposium on Operating Sys-
tems Principles, SOSP ’05, pp. 91–104. ACM, New York (2005)

22. Lange, J.R., Dinda, P.: SymCall: Symbiotic virtualization through
VMM-to-guest upcalls. In: Proceedings of the 7th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution
Environments, VEE ’11, vol. 46, pp. 193–204. ACM, New York
(2011)

23. Laureano, M., Maziero, C., Jamhour, E.: Intrusion detection in vir-
tual machine environments. In: Proceedings of the 30th EUROMI-
CRO Conference, EUROMICRO ’04, pp. 520–525. IEEE Com-
puter Society, Washington, DC (2004)

24. Litty, L., Cavilla, A.L., Lie, D.: Hypervisor support for identifying
covertly executing binaries. In: Proceedings of the 17th Conference
on Security Symposium, SS’08, pp. 243–258. USENIX Associa-
tion, Berkeley (2008)

25. Martignoni, L., Fattori, A., Paleari, R., Cavallaro, L.: Live and
trustworthy forensic analysis of commodity production systems.
In: Proceedings of the 13th International Conference on Recent
Advances in Intrusion Detection, RAID’10, pp. 297–316. Springer,
Berlin (2010)

26. Microsoft: Win32/Bagle. http://www.microsoft.com/security/
portal/threat/encyclopedia/entry.aspx?name=Win32%2fBagle.
Accessed 19 Nov 2014

27. Payne, B.D., Carbone, M., Sharif, M., Lee, W.: Lares: An architec-
ture for secure active monitoring using virtualization. In: Proceed-
ings of the 2008 IEEE Symposium on Security and Privacy, SP ’08,
pp. 233–247. IEEE Computer Society, Washington, DC (2008)

28. Riley, R., Jiang, X., Xu, D.: Guest-transparent prevention of kernel
rootkits with VMM-based memory shadowing. In: Proceedings of
the 11th International Symposium on Recent Advances in Intrusion
Detection, RAID ’08, vol. 5230, pp. 1–20. Springer, Berlin (2008)

29. Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-
oriented programming: systems, languages, and applications. ACM
Trans. Inf. Syst. Secur. 15(1) (2012)

30. Russinovich, M.E., Solomon, D.A., Ionescu, A.: Windows Inter-
nals, 6th edn. Microsoft Press, USA (2012)

31. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: a tiny hypervi-
sor to provide lifetime kernel code integrity for commodity OSes.
In: Proceedings of Twenty-First ACM SIGOPS Symposium on
Operating Systems Principles, SOSP ’07, vol. 41, pp. 335–350.
ACM, New York (2007)

32. Software, P.: AppTimer. Application Startup Timer. http://www.
passmark.com/products/apptimer.htm. Accessed 28 Mar 2014

33. Szor, P.: The Art of Computer Virus Research and Defense.
Addison-Wesley, Boston (2005)

34. Vogl, S., Eckert, C.: Using hardware performance events for
instruction-level monitoring on the x86 architecture. In: Pro-
ceedings of the 2012 European Workshop on System Security
(EuroSec’12) (2012)

35. Vulnerabilities, C., Exposures: CVE-2010-3333. http://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2010-3333. Accessed 07
Apr 2014

36. Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering kernel rootkits
with lightweight hook protection. In: Proceedings of the 16th ACM
Conference on Computer and Communications Security, CCS ’09,
pp. 545–554. ACM, New York (2009)

37. Wojtczuk, R., Rutkowska, J.: Following the White Rab-
bit: Software Attacks Against Intel VT-d Technol-
ogy (2011). http://invisiblethingslab.com/resources/2011/
Software%20Attacks%20on%20Intel%20VT-d.pdf. Accessed 02
Feb 2015

38. Yan, L.K., Jayachandra, M., Zhang, M., Yin, H.: V2E: combin-
ing hardware virtualization and software emulation for transparent
and extensible malware analysis. SIGPLAN Not. 47(7), 227–238
(2012)

39. Yang, J., Shin, K.G.: Using hypervisor to provide data secrecy
for user applications on a per-page basis. In: Proceedings of the
Fourth ACM SIGPLAN/SIGOPS International Conference on Vir-
tual Execution Environments, VEE ’08, pp. 71–80. ACM, New
York (2008)

123

Author's personal copy

http://dx.doi.org/10.1145/2499368.2451146
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?name=Win32%2fBagle
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?name=Win32%2fBagle
http://www.passmark.com/products/apptimer.htm
http://www.passmark.com/products/apptimer.htm
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3333
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3333
http://invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf
http://invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf

	U-HIPE: hypervisor-based protection of user-mode processes in Windows
	Abstract
	1 Introduction
	2 Related work
	3 Threat model and assumptions
	4 Intel virtualization support
	4.1 General overview
	4.2 Memory virtualization
	4.3 Event injection

	5 User-process protection mechanisms
	5.1 Challenges
	5.2 Events interception and memory protection
	5.3 Memory protection maintenance
	5.4 Multi-core support

	6 Introspection of swapped-out user-process pages
	6.1 Page-fault exception
	6.2 Page-fault injection and handling

	7 U-HIPE implementation on Windows
	7.1 Intercepting process creation and termination
	7.2 Intercepting thread creation and termination
	7.3 Intercepting heap creation and termination
	7.4 Intercepting modules loading
	7.5 Implementation and debugging details
	7.6 Avoiding Windows' internal protection

	8 Security analysis
	8.1 Security properties
	8.2 Prevented attacks

	9 Tests and results
	9.1 Performance
	9.1.1 Benching application startup time
	9.1.2 Page-fault injection penalty

	9.2 Protection

	10 Conclusions
	Acknowledgments
	References

